Steinberg slices and group-valued moment maps

نویسندگان

چکیده

We define a class of transversal slices in spaces which are quasi-Poisson for the action complex semisimple group G. This is multiplicative analogue Whittaker reduction. One example universal centralizer Z G, equipped with usual symplectic structure this way. construct smooth relative compactification Z‾ by taking closure each fiber wonderful By realizing as larger variety, we show that it and log-symplectic.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

D/G-valued moment maps

We study Dirac structures associated with Manin pairs (d, g) and give a Dirac geometric approach to Hamiltonian spaces with D/G-valued moment maps, originally introduced by Alekseev and Kosmann-Schwarzbach [3] in terms of quasi-Poisson structures. We explain how these two distinct frameworks are related to each other, proving that they lead to isomorphic categories of Hamiltonian spaces. We str...

متن کامل

Banach module valued separating maps and automatic continuity

For two algebras $A$ and $B$, a linear map $T:A longrightarrow B$ is called separating, if $xcdot y=0$ implies $Txcdot Ty=0$ for all $x,yin A$. The general form and the automatic continuity of separating maps between various Banach algebras have been studied extensively. In this paper, we first extend the notion of separating map for module case and then we give a description of a linear se...

متن کامل

Dirac Geometry, Quasi–Poisson Actions and D/G–Valued Moment Maps

We study Dirac structures associated with Manin pairs (d, g) and give a Dirac geometric approach to Hamiltonian spaces with D/G-valued moment maps, originally introduced by Alekseev and Kosmann-Schwarzbach [3] in terms of quasi-Poisson structures. We explain how these two distinct frameworks are related to each other, proving that they lead to isomorphic categories of Hamiltonian spaces. We str...

متن کامل

Homology of the Steinberg Variety and Weyl Group Coinvariants

LetG be a complex, connected, reductive algebraic group with Weyl groupW and Steinberg variety Z. We show that the graded Borel-Moore homology of Z is isomorphic to the smash product of the coinvariant algebra of W and the group algebra of W . 2000 Mathematics Subject Classification: Primary 20G05; Secondary 20F55

متن کامل

Homology of Generalized Steinberg Varieties and Weyl Group Invariants

Let G be a complex, connected, reductive algebraic group. In this paper we show analogues of the computations by Borho and MacPherson of the invariants and antiinvariants of the cohomology of the Springer fibres of the cone of nilpotent elements, N , of Lie(G) for the Steinberg variety Z of triples. Using a general specialization argument we show that for a parabolic subgroup WP ×WQ of W × W th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematics

سال: 2022

ISSN: ['1857-8365', '1857-8438']

DOI: https://doi.org/10.1016/j.aim.2022.108344